Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems

نویسندگان

  • Liping Zhou
  • Liang Bao
  • Yiqin Lin
  • Yimin Wei
  • Qinghua Wu
چکیده

This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods. Keywords—Quadratic eigenvalue problem, Generalized secondorder Krylov subspace, Generalized second-order Arnoldi process, Projection technique, Refined technique, Restarting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicitly Restarted Generalized Second-order Arnoldi Type Algorithms for the Quadratic Eigenvalue Problem

We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640–659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with su...

متن کامل

Sharp Ritz Value Estimates for Restarted Krylov Subspace Iterations

Gradient iterations for the Rayleigh quotient are elemental methods for computing the smallest eigenvalues of a pair of symmetric and positive definite matrices. A considerable convergence acceleration can be achieved by preconditioning and by computing Rayleigh-Ritz approximations from subspaces of increasing dimensions. An example of the resulting Krylov subspace eigensolvers is the generaliz...

متن کامل

A Sylvester-Arnoldi type method for the generalized eigenvalue problem with two-by-two operator determinants

In various applications, for instance in the detection of a Hopf bifurcation or in solving separable boundary value problems using the two-parameter eigenvalue problem, one has to solve a generalized eigenvalue problem of the form (B1 ⊗A2 −A1 ⊗B2)z = μ(B1 ⊗ C2 − C1 ⊗B2)z, where matrices are 2 × 2 operator determinants. We present efficient methods that can be used to compute a small subset of t...

متن کامل

An Implicitly-restarted Krylov Subspace Method for Real Symmetric/skew-symmetric Eigenproblems

A new implicitly-restarted Krylov subspace method for real symmetric/skew-symme– tric generalized eigenvalue problems is presented. The new method improves and generalizes the SHIRA method of [37] to the case where the skew symmetric matrix is singular. It computes a few eigenvalues and eigenvectors of the matrix pencil close to a given target point. Several applications from control theory are...

متن کامل

Some new restart vectors for explicitly restarted Arnoldi method

The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012